%I #16 Nov 24 2016 13:53:27
%S 1,15,210,2940,41160,576240,8067360,112943040,1581202560,22136835840,
%T 309915701760,4338819824640,60743477544960,850408685629440,
%U 11905721598812160,166680102383370240,2333521433367183360
%N Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
%C The initial terms coincide with those of A170734, although the two sequences are eventually different.
%C First disagreement at index 18: a(18) = 457370200939967938455, A170734(18) = 457370200939967938560. - _Klaus Brockhaus_, Mar 27 2011
%C Computed with MAGMA using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A168740/b168740.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, -91).
%F G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
%t With[{num=Total[2t^Range[17]]+t^18+1,den=Total[-13 t^Range[17]]+ 91t^18+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* _Harvey P. Dale_, Nov 11 2012 *)
%t CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 10 2016 *)
%Y Cf. A170734 (G.f.: (1+x)/(1-14*x)).
%K nonn,easy
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009