login
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1

%I #13 Mar 10 2019 13:41:23

%S 1,48,2256,106032,4983504,234224688,11008560336,517402335792,

%T 24317909782224,1142941759764528,53718262708932816,

%U 2524758347319842352,118663642324032590544,5577191189229531755568,262127985893787992511696

%N Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

%C The initial terms coincide with those of A170767, although the two sequences are eventually different.

%C First disagreement at index 17: a(17) = 27214913879450750746541812680, A170767(17) = 27214913879450750746541813808. - _Klaus Brockhaus_, Mar 28 2011

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A168725/b168725.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, -1081).

%F G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

%t CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^17 - 46*t^16 - 46*t^15 - 46*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Aug 06 2016 *)

%t coxG[{17,1081,-46}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Mar 10 2019 *)

%Y Cf. A170767 (G.f.: (1+x)/(1-47*x)).

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009