login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
1

%I #21 Feb 22 2021 09:19:33

%S 1,6,30,150,750,3750,18750,93750,468750,2343750,11718750,58593750,

%T 292968750,1464843750,7324218750,36621093750,183105468750,

%U 915527343735,4577636718600,22888183592640,114440917961400,572204589798000

%N Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

%C The initial terms coincide with those of A003948, although the two sequences are eventually different.

%C First disagreement at index 17: a(17) = 915527343735, A003948(17) = 915527343750. - _Klaus Brockhaus_, Mar 30 2011

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A168683/b168683.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-10).

%F G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / (10*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1).

%F G.f.: (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18). - _G. C. Greubel_, Feb 22 2021

%t CoefficientList[Series[(1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18), {t, 0, 40}], t] (* _G. C. Greubel_, Aug 03 2016, Feb 22 2021 *)

%t coxG[{17,10,-4,30}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jun 09 2017 *)

%o (Magma)

%o R<t>:=PowerSeriesRing(Integers(), 40);

%o Coefficients(R!( (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18) )); // _G. C. Greubel_, Feb 22 2021

%o (Sage)

%o def A168683_list(prec):

%o P.<t> = PowerSeriesRing(ZZ, prec)

%o return P( (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18) ).list()

%o A168683_list(40) # _G. C. Greubel_, Feb 22 2021

%Y Cf. A003948 (G.f.: (1+x)/(1-5*x)).

%K nonn,easy

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009