Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 03 2019 05:01:37
%S 1,1,1,1,10,1,1,12,12,1,1,12,18,12,1,1,10,20,20,10,1,1,12,45,65,45,12,
%T 1,1,14,63,140,154,63,14,1,1,16,84,224,350,252,84,16,1,1,18,108,336,
%U 630,630,384,108,18,1,1,20,135,480,1050,1260,1050,555,135,20,1
%N Triangle read by rows (0 <= k <= n): T(n,k) = [x^k] p(x,n), where p(0,0) = 1, p(x,n) = (7 - n)*binomial(n, k) - (6 - n)*(x^n + 1) for 1 <= n <= 5, and p(x,n) = 5*(x + 1)^n - Sum_{i=0..3} (Sum_{j=0..i} binomial(n, j)*(x^j + x^(n - j))) + (1/6)*n*(n - 1)*(n - 5)*x^(n - 3) for n >= 6.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 10, 1;
%e 1, 12, 12, 1;
%e 1, 12, 18, 12, 1;
%e 1, 10, 20, 20, 10, 1;
%e 1, 12, 45, 65, 45, 12, 1;
%e 1, 14, 63, 140, 154, 63, 14, 1;
%e 1, 16, 84, 224, 350, 252, 84, 16, 1;
%e 1, 18, 108, 336, 630, 630, 384, 108, 18, 1;
%e 1, 20, 135, 480, 1050, 1260, 1050, 555, 135, 20, 1;
%e ...
%t p[x_, n_] := If[n == 0, 1, If[n == 1, x + 1, 5*(x + 1)^n - (x^n + 1) - If[n > 2, (x^n + n*x^(n - 1) + n*x + 1), (x^n + 1)] - If[ n > 3, (x^n + n*x^( n - 1) + Binomial[n, n - 2]*x^(n - 2) + Binomial[n, n - 2]*x^2 + n*x + 1), (x^n + 1)] - If[n > 4, (x^n + n*x^( n - 1) + Binomial[n, n - 2]*x^(n - 2) + Binomial[n, n - 2]*x^(n - 3) + Binomial[ n, n - 3]*x^3 + Binomial[n, n - 2]*x^2 + n*x + 1), (x^n + 1)]]];
%t Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 10}]]
%o (Maxima) T(n, k) := if k = 0 or k = n then 1 else (if n <= 5 then (7 - n)*binomial(n, k) else ratcoef(5*(x + 1)^n - sum(sum(binomial(n, j)*(x^j + x^(n - j)), j, 1, i), i, 1, 3) + (1/6)*n*(n - 1)*(n - 5)*x^(n - 3), x, k))$
%o create_list(T(n, k), n, 0, 12, k, 0, n); /* _Franck Maminirina Ramaharo_, Jan 02 2019 */
%Y Cf. A132046, A168641, A168643, A168646.
%K nonn,easy,tabl,less
%O 0,5
%A _Roger L. Bagula_ and _Gary W. Adamson_, Dec 01 2009
%E Edited by _Franck Maminirina Ramaharo_, Jan 02 2019