login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1 + x^2 - x^3) / ( (1-x)*(1-x-x^4) ).
1

%I #15 Dec 26 2023 12:19:51

%S 0,1,2,4,5,7,10,15,21,29,40,56,78,108,149,206,285,394,544,751,1037,

%T 1432,1977,2729,3767,5200,7178,9908,13676,18877,26056,35965,49642,

%U 68520,94577,130543,180186,248707,343285,473829,654016,902724,1246010,1719840,2373857,3276582

%N Expansion of x*(1 + x^2 - x^3) / ( (1-x)*(1-x-x^4) ).

%C Limiting ratio is: 1.38028, see A086106.

%D R. Pallu de la Barriere, Optimal Control Theory,Dover Publications, New York,1967,pages 339-344

%H G. C. Greubel, <a href="/A168639/b168639.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-1)

%F a(n)= 2*a(n-1) -a(n-2) +a(n-4) -a(n-5). - _R. J. Mathar_, Dec 02 2009

%F a(n) = A098578(n) - A098578(n-3) + A098578(n-2). - _R. J. Mathar_, May 23 2013

%t Clear[n, m, v, M, a, b, c, K]

%t M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 0, 0, 1}}

%t v[0] = {0, 0, 0, 1};

%t v[n_] := v[n] = M.v[n - 1] + {1, 1, 1, 1}

%t a = Table[v[n][[1]], {n, 0, 30}]

%t LinearRecurrence[{2,-1,0,1,-1}, {0, 1, 2, 4, 5}, 50] (* _G. C. Greubel_, Jul 28 2016 *)

%o (PARI) a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,1,0,-1,2]^n*[0;1;2;4;5])[1,1] \\ _Charles R Greathouse IV_, Jul 29 2016

%Y Cf. A098578.

%K nonn,easy

%O 0,3

%A _Roger L. Bagula_ and _Gary W. Adamson_, Dec 01 2009