Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:49
%S 1,1,1,1,9,1,1,17,17,1,1,25,41,25,1,1,33,73,73,33,1,1,41,113,153,113,
%T 41,1,1,49,161,273,273,161,49,1,1,57,217,441,553,441,217,57,1,1,65,
%U 281,665,1001,1001,665,281,65,1,1,73,353,953,1673,2009,1673,953,353,73,1
%N Triangle T(n,k) = 8*binomial(n,k) - 7 with columns 0 <= k <= n.
%C Triangle T(n,k): the coefficient [x^k] of the polynomial 8*(x+1)^n -7*( x^(n+1) - 1)/(x-1).
%H G. C. Greubel, <a href="/A168625/b168625.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,k) = [x^k] ( 8*(x+1)^n-7*Sum_{s=0..n} x^s ) = 8*A007318(n,k) - 7. - _R. J. Mathar_, Sep 02 2011
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 9, 1;
%e 1, 17, 17, 1;
%e 1, 25, 41, 25, 1;
%e 1, 33, 73, 73, 33, 1;
%e 1, 41, 113, 153, 113, 41, 1;
%e 1, 49, 161, 273, 273, 161, 49, 1;
%e 1, 57, 217, 441, 553, 441, 217, 57, 1;
%e 1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1;
%e 1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1;
%p A168625:= (n,k) -> 8*binomial(n, k) -7; seq(seq(A168625(n, k), k = 0..n), n = 0.. 10); # _G. C. Greubel_, Mar 12 2020
%t m = 8; p[x_, n_]:= FullSimplify[ExpandAll[m*(x+1)^n -(m-1)(x^(n+1) -1)/(x-1)]];
%t Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten
%t Table[8*Binomial[n, k] -7, {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 12 2020 *)
%o (Magma) [8*Binomial(n, k) -7: k in [0..n], n in [0..10]]; // _G. C. Greubel_, Mar 12 2020
%o (Sage) [[8*binomial(n, k) -7 for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020
%Y Sequence m*binomial(n,k) - (m-1): A007318 (m=1), A109128 (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), this sequence (m=8).
%K nonn,easy,tabl
%O 0,5
%A _Roger L. Bagula_, Dec 01 2009
%E Definition simplified by _R. J. Mathar_, Sep 02 2011