Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 08 2024 22:19:16
%S 16,14641,104060401,1004006004001,10004000600040001,
%T 100004000060000400001,1000004000006000004000001,
%U 10000004000000600000040000001,100000004000000060000000400000001
%N a(n) = (10^n+1)^4.
%H Vincenzo Librandi, <a href="/A168576/b168576.txt">Table of n, a(n) for n = 0..100</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (11111,-11222110,1122211000,-11111000000,10000000000).
%F G.f. ( -16+163135*x-120938010*x^2+5861575000*x^3-14641000000*x^4 ) / ( (x-1)*(100*x-1)*(1000*x-1)*(10*x-1)*(10000*x-1) ). - _R. J. Mathar_, Jul 03 2012
%F a(n) = A000583(A062397(n)). - _Michel Marcus_, May 26 2016
%t Table[(10^n + 1)^4, {n, 0, 30}] (* _Vincenzo Librandi_, May 26 2016 *)
%t (10^Range[0,20]+1)^4 (* or *) LinearRecurrence[{11111,-11222110,1122211000,-11111000000,10000000000},{16,14641,104060401,1004006004001,10004000600040001},20] (* _Harvey P. Dale_, Sep 10 2018 *)
%o (PARI) for(n=0,13,print1((10^n+1)^4","))
%o (Magma) [(10^n+1)^4: n in [0..10]]; // _Vincenzo Librandi_, May 26 2016
%Y Cf. A000583, A062397.
%K easy,nonn
%O 0,1
%A _Jason Earls_, Nov 30 2009