%I #6 Apr 01 2022 09:15:08
%S 1,1,1,1,5,1,1,19,19,1,1,65,200,65,1,1,211,1536,1536,211,1,1,665,9955,
%T 22350,9955,665,1,1,2059,58521,251931,251931,58521,2059,1,1,6305,
%U 324322,2441199,4596954,2441199,324322,6305,1,1,19171,1732438,21480418,68758180,68758180,21480418,1732438,19171,1
%N Expansion of g.f. (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1-x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 1, b = -1, and c = 1, read by rows.
%H G. C. Greubel, <a href="/A168551/b168551.txt">Rows n = 0..50 of the triangle, flattened</a>
%F G.f.: (1/2)*( a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi(x, -n-1, 1) + c*2^(n+1)*(1 - x)^(n+1)*LerchPhi(x, -n, 1/2) ), where a = 1, b = -1, and c = 1.
%F From _G. C. Greubel_, Mar 31 2022: (Start)
%F T(n, k) = (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) ), with a = 1, b = -1, and c = 1.
%F T(n, n-k) = T(n, k). (End)
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 5, 1;
%e 1, 19, 19, 1;
%e 1, 65, 200, 65, 1;
%e 1, 211, 1536, 1536, 211, 1;
%e 1, 665, 9955, 22350, 9955, 665, 1;
%e 1, 2059, 58521, 251931, 251931, 58521, 2059, 1;
%e 1, 6305, 324322, 2441199, 4596954, 2441199, 324322, 6305, 1;
%e 1, 19171, 1732438, 21480418, 68758180, 68758180, 21480418, 1732438, 19171, 1;
%t p[x_, n_, a_, b_, c_]= (1/2)*(a*(1+x)^n + b*(1-x)^(n+2)*LerchPhi[x,-n-1,1] + c*2^(n+1)*(1-x)^(n+1)*LerchPhi[x,-n,1/2]);
%t Table[CoefficientList[p[x,n,1,-1,1], x], {n,0,10}]//Flatten (* modified by _G. C. Greubel_, Mar 31 2022 *)
%o (Sage)
%o def A168552(n,k,a,b,c): return (1/2)*( a*binomial(n,k) + sum( (-1)^(k-j)*(b*binomial(n+2, k-j)*(j+1)^(n+1) + 2*c*binomial(n+1,k-j)*(2*j+1)^n) for j in (0..k)) )
%o flatten([[A168552(n,k,1,-1,1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 31 2022
%Y Cf. A001263, A132787.
%Y Cf. A168517, A168518, A168549, A169552.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Nov 29 2009
%E Edited by _G. C. Greubel_, Mar 31 2022