OFFSET
1,1
COMMENTS
(1) It is conjectured that the sequence is infinite.
(2) 29 = prime(10) is the smallest prime with the property that its digits can be the final two digits of a square.
(3) The possible final digits of m are necessarily e = 23, 27, 73 or 77.
(4) Elementary proof of (3) with (10^2 * k + e)^2 = "n 29" for these four values of e only.
(5) Note 23 + 77 = 27 + 73 = 10^2.
REFERENCES
Andreas Bartholome, Josef Rung, Hans Kern: Zahlentheorie für Einsteiger, Vieweg & Sohn 1995
Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
(1) 529 = 23^2, 5 = prime(3) = a(1);
(2) 729 = 27^2, 7 = prime(4) = a(2);
(3) 5329 = 73^2, 53 = prime(16) = a(3);
(4) 16129 = 127^2, but 161 = 7 * 23 is composite => 161 is not a term of the sequence;
(5) 31329 = 177^2, 313 = prime(65) gives a(6) = 313.
MAPLE
A:= NULL:
count:= 0:
for m from 0 while count < 100 do
for q in [23, 27, 73, 77] do
r:= floor((100*m + q)^2/100);
if isprime(r) then A:= A, r; count:= count+1; fi
od od:
A; # Robert Israel, Nov 23 2015
PROG
(PARI) isok(n) = isprime(n) && issquare(100*n + 29) \\ Michel Marcus, Jul 22 2013; corrected Jun 13 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Nov 29 2009
STATUS
approved