login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 98*a(n-1) - a(n-2); a(1) = 0, a(2) = 10.
5

%I #45 Mar 16 2024 11:19:01

%S 0,10,980,96030,9409960,922080050,90354434940,8853812544070,

%T 867583274883920,85014307126080090,8330534515080964900,

%U 816307368170808480110,79989791546224150085880,7838183264161795899936130,768061970096309774043654860,75262234886174196060378240150

%N a(n) = 98*a(n-1) - a(n-2); a(1) = 0, a(2) = 10.

%H Colin Barker, <a href="/A168520/b168520.txt">Table of n, a(n) for n = 1..503</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (98, -1).

%F From _Colin Barker_, Oct 08 2015: (Start)

%F a(n) = 98*a(n-1) - a(n-2) for n>2.

%F O.g.f.: 10*x^2 / (x^2-98*x+1). (End)

%F E.g.f.: exp(49*x)*( (49/(2*sqrt(6)))*sinh(20*sqrt(6)*x) - 10*cosh(20*sqrt(6)*x) ) + 10. - _G. C. Greubel_, Jul 24 2016

%t LinearRecurrence[{98,-1},{0,10},30] (* _Harvey P. Dale_, Sep 19 2011 *)

%t CoefficientList[Series[10 x/(x^2 - 98 x + 1), {x, 0, 33}], x] (* _Vincenzo Librandi_, Oct 13 2015 *)

%o (PARI) concat(0, Vec(10*x^2/(x^2-98*x+1) + O(x^30))) \\ _Colin Barker_, Oct 08 2015

%o (Magma) I:=[0,10]; [n le 2 select I[n] else 98*Self(n-1)-Self(n-2): n in [1..40]]; // _Vincenzo Librandi_, Oct 13 2015

%Y Cf. A004189, A000108, A000984, A165293.

%K nonn,easy

%O 1,2

%A _Mark Dols_, Nov 28 2009

%E a(1)=1 changed to a(1)=10, and data changed accordingly, so sequence is a bisection of A004189- _Mark Dols_, Feb 01 2010

%E Changed name to match data and offset, _Joerg Arndt_, Oct 13 2015