login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} [(n+1)(n+2)/2]*2^(n^2)*(1 + 2^n*x)^n*x^n.
2

%I #5 Oct 07 2020 08:33:07

%S 1,6,108,5888,1107456,768540672,2038400811008,21012301788217344,

%T 848380447466572480512,134688875052459668084359168,

%U 84279244669071810947388769566720

%N G.f.: Sum_{n>=0} [(n+1)(n+2)/2]*2^(n^2)*(1 + 2^n*x)^n*x^n.

%C This sequence illustrates the identity:

%C Sum_{n>=0} [(n+1)(n+2)/2]*q^(n^2)*G(q^n*x)^n*x^n = Sum_{n>=0} c(n)*x^n

%C where c(n) = [x^n] 1/(1 - q^n*x*G(x))^3.

%F a(n) = [x^n] 1/(1 - 2^n*x*(1+x))^3.

%F a(n) = Sum_{k=0..[n/2]} [(n-k+1)(n-k+1)/2]*C(n-k,k)*2^(n(n-k)).

%F a(n) ~ n^2 * 2^(n^2 - 1). - _Vaclav Kotesovec_, Oct 07 2020

%e G.f.: A(x) = 1 + 6*x + 108*x^2 + 5888*x^3 + 1107456*x^4 +...

%t Table[Sum[(n - k + 1)*(n - k + 2)/2 * Binomial[n - k, k]*2^(n*(n - k)), {k, 0, n/2}], {n, 0, 15}] (* _Vaclav Kotesovec_, Oct 07 2020 *)

%o (PARI) {a(n)=polcoeff(sum(m=0,n,(m+1)*(m+2)/2*(1+2^m*x)^m*2^(m^2)*x^m)+x*O(x^n),n)}

%o (PARI) {a(n)=polcoeff(1/(1-2^n*x*(1+x)+x*O(x^n))^3,n)}

%o (PARI) {a(n)=sum(k=0,n\2,(n-k+1)*(n-k+2)/2*binomial(n-k,k)*2^(n*(n-k)))}

%Y Cf. A168480, A168481.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 26 2009