login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n * Product_{k=1..n} (4*k*(4*k+2))^(n-k).
1

%I #7 Jan 23 2024 11:27:51

%S 1,2,96,368640,237817036800,44185111712759808000,

%T 3612115491258144161739571200000,

%U 184260348281378257834400760180580024320000000

%N a(n) = 2^n * Product_{k=1..n} (4*k*(4*k+2))^(n-k).

%C Hankel transform of A168441.

%F a(n) ~ Pi^(n/2) * 2^(2*n^2 + n + 5/24) * n^(n^2 + n/2 - 1/24) / (sqrt(A) * exp(3*n^2/2 + n/2 - 1/24)), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Jan 23 2024

%t Table[2^n*Product[(4*k*(4*k+2))^(n-k), {k,1,n}], {n,0,10}] (* _Vaclav Kotesovec_, Jan 23 2024 *)

%Y Cf. A168441.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Nov 25 2009