Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Jul 02 2021 10:27:36
%S 1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,
%T 3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,
%U 9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3,1,4,5,9,3
%N a(n) = 4^n mod 11.
%C Period 5: repeat [1, 4, 5, 9, 3].
%H Vincenzo Librandi, <a href="/A168429/b168429.txt">Table of n, a(n) for n = 0..1000</a>
%H Joshua Ide and Marc S. Renault, <a href="https://www.fq.math.ca/Papers1/50-2/IdeRenault.pdf">Power Fibonacci Sequences</a>, Fib. Q. 50(2), 2012, 175-179.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1).
%F a(n) = a(n-5). G.f.: (1+4*x+5*x^2+9*x^3+3*x^4)/((1-x) * (1+x+x^2+x^3+x^4)). - _R. J. Mathar_, Apr 13 2010
%t Table[Mod[4^n, 11], {n, 0, 50}] (* _G. C. Greubel_, Mar 05 2016 *)
%t PowerMod[4,Range[0,100],11] (* or *) PadRight[{},100,{1,4,5,9,3}] (* _Harvey P. Dale_, Jul 02 2021 *)
%o (Sage) [power_mod(4, n, 11) for n in range(0, 95)]
%o (PARI) a(n)=4^n%11 \\ _Charles R Greathouse IV_, Oct 16 2015
%Y See also A036117.
%K nonn,easy
%O 0,2
%A _Zerinvary Lajos_, Nov 25 2009