login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number triangle with row sums given by quadruple factorial numbers A001813.
2

%I #16 Mar 31 2023 14:41:04

%S 1,1,1,7,4,1,71,39,9,1,1001,536,126,16,1,18089,9545,2270,310,25,1,

%T 398959,208524,49995,7120,645,36,1,10391023,5394991,1301139,190435,

%U 18445,1197,49,1,312129649,161260336,39066076,5828704,589750,41776,2044,64,1

%N Number triangle with row sums given by quadruple factorial numbers A001813.

%C Reversal of coefficient array for the polynomials P(n,x) = Sum_{k=0..n} (C(n+k,2k)*(2k)!/k!)*x^k*(1-x)^(n-k).

%C Note that P(n,x) = Sum_{k=0..n} A113025(n,k)*x^k*(1-x)^(n-k). Row sums are A001813.

%H William P. Orrick, <a href="/A168422/b168422.txt">Table of n, a(n) for n = 0..10010</a>

%F T(n,k) = (1/k!)*Sum_{j=k..n} (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!).

%e Triangle begins

%e 1

%e 1 1

%e 7 4 1

%e 71 39 9 1

%e 1001 536 126 16 1

%e 18089 9545 2270 310 25 1

%e 398959 208524 49995 7120 645 36 1

%e 10391023 5394991 1301139 190435 18445 1197 49 1

%e 312129649 161260336 39066076 5828704 589750 41776 2044 64 1

%e Production matrix begins

%e 1 1

%e 6 3 1

%e 40 20 5 1

%e 336 168 42 7 1

%e 3456 1728 432 72 9 1

%e 42240 21120 5280 880 110 11 1

%e 599040 299520 74880 12480 1560 156 13 1

%e 9676800 4838400 1209600 201600 25200 2520 210 15 1

%e Complete this with a top row (1,0,0,0,...) and invert: we get

%e 1

%e -1 1

%e -3 -3 1

%e -5 -5 -5 1

%e -7 -7 -7 -7 1

%e -9 -9 -9 -9 -9 1

%e -11 -11 -11 -11 -11 -11 1

%e -13 -13 -13 -13 -13 -13 -13 1

%e -15 -15 -15 -15 -15 -15 -15 -15 1

%e -17 -17 -17 -17 -17 -17 -17 -17 -17 1

%o (SageMath)

%o def T(n,k):

%o return(sum((-1)^(j-k) * binomial(2*n-j,n) * binomial(n,j)\

%o * binomial(j,k) * factorial(n-j)\

%o for j in range(k,n+1))) # _William P. Orrick_, Mar 24 2023

%o (PARI) T(n,k)={sum(j=k, n, (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!))/k!} \\ _Andrew Howroyd_, Mar 24 2023

%Y Column 1 is |A002119|.

%Y Sum_{k=0..n} T(n,k) * 2^k, is A001517(n).

%Y Cf. A079267.

%K easy,nonn,tabl

%O 0,4

%A _Paul Barry_, Nov 25 2009

%E Corrected and extended by _William P. Orrick_, Mar 24 2023