%I #4 Jan 21 2013 09:04:44
%S 3,13,103,109,139,163,181,211,379,457,463,1021,1087,1123,1201,1249,
%T 1303,1381,1579,1597,1609,1699,1861,1873,1987,2011,2029,2053,2143,
%U 2221,2281,2341,2473,2503,2557,2731,2857,3061,3067,3217,3253,3271,3319,3331,3517
%N Primes q for which 1 concatenated with q^3 (A168327) is prime.
%C It is conjectured that this sequence is infinite.
%D Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
%D Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
%e (1) "1 3^3"=10^2+3^3=127=prime(31) gives a(1)=3=prime(2)
%e (2) "1 103^3"=10^7+103^3=11092727=prime(732258) gives a(3)=103=prime(27)
%t Select[Prime[Range[500]],PrimeQ[FromDigits[Join[{1},IntegerDigits[ #^3]]]]&] (* _Harvey P. Dale_, Jan 21 2013 *)
%Y A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
%Y A168327 Primes of concatenated form p= "1 n^3"
%Y A168375 Natural numbers n for which the concatenation p= "1 n^3" is prime
%K nonn,base
%O 1,1
%A Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 25 2009
%E Edited and extended by _Charles R Greathouse IV_, Apr 23 2010