login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8 * floor(n/2).
3

%I #32 Mar 19 2024 09:34:09

%S 0,8,8,16,16,24,24,32,32,40,40,48,48,56,56,64,64,72,72,80,80,88,88,96,

%T 96,104,104,112,112,120,120,128,128,136,136,144,144,152,152,160,160,

%U 168,168,176,176,184,184,192,192,200,200,208,208,216,216,224,224,232,232,240,240,248

%N a(n) = 8 * floor(n/2).

%C a(n+1) is the total number of unit circles (on square lattice) enclosing a circle of radius n centered at (0,0), with intersections allowed. If intersections are prohibited the sequence would be {a(n+2)}. See illustration in links. - _Kival Ngaokrajang_, Jun 21 2014

%H Vincenzo Librandi, <a href="/A168397/b168397.txt">Table of n, a(n) for n = 1..1000</a>

%H Kival Ngaokrajang, <a href="/A168397/a168397.pdf">Illustration of initial terms</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 8*n - a(n-1) - 8, with n>1, a(1)=0.

%F G.f.: 8*x^2/((1+x)*(x-1)^2). - _Vincenzo Librandi_, Sep 18 2013

%F a(n) = 8 * floor(n/2) = 8 * A004526(n). - _Vincenzo Librandi_, Sep 18 2013

%F E.g.f.: 2*(1 + (2*x - 1)*exp(2*x))*exp(-x). - _G. C. Greubel_, Jul 19 2016

%p A168397:=n->8*floor(n/2); seq(A168397(n), n=1..50); # _Wesley Ivan Hurt_, Jun 21 2014

%t Table[8 Floor[n/2], {n, 70}] (* _Vincenzo Librandi_, Sep 18 2013 *)

%o (Magma) [8*Floor(n/2): n in [1..70]]; // _Vincenzo Librandi_, Sep 18 2013

%Y Cf. A004526.

%K nonn,easy,less

%O 1,2

%A _Vincenzo Librandi_, Nov 24 2009

%E Simpler definition and terms corrected by _Vincenzo Librandi_, Sep 18 2013