OFFSET
1,1
COMMENTS
There are 4! = 24 permutations of 4 elements, because of commutativity of addition the sequence has 12 different terms.
Note that all terms are composite.
REFERENCES
Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
Friedhelm Padberg, Elementare Zahlentheorie, Spektrum Akademischer Verlag, 2. Auflage 1991
EXAMPLE
(1) 174 = 2 x 3 x 29 = 5^3 + 7^2
(2) 253 = 11 x 23 = 2^7 + 5^3
(3) 292 = 2 ^ 2 x 73 = 3^5 + 7^2
(4) 368 = 2^4 x 23 = 5^2 + 7^3
(5) 371 = 7 x 53 = 2^7 + 3^5
(6) 375 = 3 x 5 ^ 3 = 2^5 + 7^3
(7) 2212 = 2 ^ 2 x 7 x 79 = 3^7 + 5^2
(8) 2219 = 7 x 317 = 2^5 + 3^7
(9) 16815 = 3 x 5 x 19 x 59 = 2^3 + 7^5
(10) 16816 = 2 ^ 4 x 1051 = 3^2 + 7^5
(11) 78133 = 11 x 7103 = 2^3 + 5^7
(12) 78134 = 2 x 7 x 5581 = 3^2 + 5^7
MATHEMATICA
Union[#[[1]]^#[[2]]+#[[3]]^#[[4]]&/@Permutations[Prime[Range[4]]]] (* Harvey P. Dale, Oct 25 2015 *)
CROSSREFS
KEYWORD
fini,full,nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 23 2009, Nov 24 2009
STATUS
approved