login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The fourth left hand column of triangle A167580.
5

%I #11 Mar 03 2024 17:43:11

%S -15,-48,2024,31616,274480,1784320,9645312,45735936,196441344,

%T 780595200,2912532480,10315202560,34963222528,114140905472,

%U 360716042240,1108051230720,3319564664832,9726122262528,27935264735232,78810426900480,218761889054720,598349308755968

%N The fourth left hand column of triangle A167580.

%H G. C. Greubel, <a href="/A168305/b168305.txt">Table of n, a(n) for n = 4..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (16, -112, 448, -1120, 1792, -1792, 1024, -256).

%F a(n) = 2^n*(54*n^7 - 763*n^6 + 4158*n^5 - 11305*n^4 + 16401*n^3 - 12502*n^2 + 4587*n - 630)/10080.

%F G.f.: (16*z^4 + 576*z^3 + 1112*z^2 + 192*z - 15)/(2*z-1)^8.

%F a(n) = 16*a(n-1) - 112*a(n-2) + 448*a(n-3) - 1120*a(n-4) + 1792*a(n-5) - 1792*a(n-6) + 1024*a(n-7) - 256*a(n-8).

%F a(n) - 15*a(n-1) + 98*a(n-2) - 364*a(n-3) + 840*a(n-4) - 1232*a(n-5) + 1120*a(n-6) - 576*a(n-7) + 128*a(n-8) = 27*2^(n-1).

%t LinearRecurrence[{16, -112, 448, -1120, 1792, -1792, 1024, -256}, {-15, -48, 2024, 31616, 274480, 1784320, 9645312, 45735936}, 997] (* _G. C. Greubel_, Jul 17 2016 *)

%o (Magma) [2^n*(54*n^7-763*n^6+4158*n^5-11305*n^4+16401*n^3- 12502*n^2+4587*n-630)/10080: n in [4..40]]; // _Vincenzo Librandi_, Jul 18 2016

%Y Equals the fourth left hand column of triangle A167580.

%Y Other left hand columns are A014480, A167581, A167582 and A168306.

%K easy,sign

%O 4,1

%A _Johannes W. Meijer_, Nov 23 2009