login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Iterate the map n -> sum of largest digit of all divisors of n; sequence gives number of steps to reach 14.
3

%I #8 Feb 05 2022 11:31:00

%S 6,5,4,12,11,3,2,6,7,7,10,5,0,1,7,3,9,8,2,6,12,5,13,8,11,3,12,8,12,5,

%T 14,3,1,10,14,3,3,8,4,13,9,13,1,13,11,3,2,4,9,8,7,12,14,11,5,3,3,8,5,

%U 4,11,13,13,2,14,3,12,8,15,3,6,3,4,12,6,8,4,8,14,13,2,7,9,7,2,7,13,8,4,3,9,8

%N Iterate the map n -> sum of largest digit of all divisors of n; sequence gives number of steps to reach 14.

%D J. Earls, "Black Hole 14," Mathematical Bliss, Pleroma Publications, 2009, pages 18-22. ASIN: B002ACVZ6O

%H Harvey P. Dale, <a href="/A168239/b168239.txt">Table of n, a(n) for n = 2..1000</a>

%t nl[n_]:=NestWhileList[Total[Max[IntegerDigits[#]]&/@Divisors[ #]]&,n,#!= 14&]; Table[Length[nl[k]],{k,2,100}]-1 (* _Harvey P. Dale_, Feb 05 2022 *)

%o (PARI) a(n)=my(k);while(n!=14, n=sumdiv(n,d, vecmax(eval(Vec(Str(d)))));k++); k \\ _Charles R Greathouse IV_, May 22 2012

%Y Cf. A054055, A209928.

%K base,easy,nonn

%O 2,1

%A _Jason Earls_, Nov 21 2009