login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient triangle sequence of characteristic polynomials of a Fermat like matrix:M(n)=Pascal n-th matrix: F(n)=Inverse[Transpose[M(n)]].M(n)
0

%I #2 Mar 30 2012 17:34:35

%S 1,1,-1,1,-1,1,1,1,-1,-1,1,1,0,1,1,1,-5,10,-10,5,-1,1,-5,-4,25,-4,-5,

%T 1,1,15,64,50,-50,-64,-15,-1,1,15,65,66,30,66,65,15,1,1,-55,455,-671,

%U 1410,-1410,671,-455,55,-1,1,-55,1815,-4730,11495,-7251,11495,-4730,1815,-55

%N Coefficient triangle sequence of characteristic polynomials of a Fermat like matrix:M(n)=Pascal n-th matrix: F(n)=Inverse[Transpose[M(n)]].M(n)

%C Row sums are:

%C {1, 0, 1, 0, 4, 0, 9, 0, 324, 0, 9801, 0,...}

%C Example Matrix F(3):

%C {{1, 1, 1},

%C {-1, -3, -2},

%C {1, 2, 1}}

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 172.

%e {1},

%e {1, -1},

%e {1, -1, 1},

%e {1, 1, -1, -1},

%e {1, 1, 0, 1, 1},

%e {1, -5, 10, -10, 5, -1},

%e {1, -5, -4, 25, -4, -5, 1},

%e {1, 15, 64, 50, -50, -64, -15, -1},

%e {1, 15, 65, 66, 30, 66, 65, 15, 1},

%e {1, -55, 455, -671, 1410, -1410, 671, -455, 55, -1},

%e {1, -55, 1815, -4730, 11495, -7251, 11495, -4730, 1815, -55, 1},

%e {1, 197, 4675, -33825, -54978, 99174, -99174, 54978, 33825, -4675, -197, -1}

%t Clear[T, M, F];

%t T[n_, m_] := If[n >= m, Binomial[n, m], 0];

%t M[n_] := Table[T[k, m], {k, 0, n}, {m, 0, n}];

%t F[n_] := Inverse[Transpose[M[n]]].M[n];

%t Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[F[n], x], x], {n, 0, 10}]];

%t Flatten[%]

%Y A045912

%K sign,uned

%O 0,17

%A _Roger L. Bagula_, Nov 20 2009