login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - 4*x + 7*x^2).
8

%I #50 Mar 17 2024 02:14:13

%S 1,4,9,8,-31,-180,-503,-752,513,7316,25673,51480,26209,-255524,

%T -1205559,-3033568,-3695359,6453540,51681673,161551912,284435937,

%U 6880364,-1963530103,-7902282960,-17864421119,-16141703756,60484132809

%N Expansion of 1/(1 - 4*x + 7*x^2).

%C Also the coefficient of i of Q^(n+1), Q being the quaternion 2+i+j+k. The real part of the quaternion power is A213421, see also A087455, A088138, A128018. - _Stanislav Sykora_, Jun 11 2012

%C a(n)*(-1)^n gives the coefficient c(7^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (but not for primes 2 and 3) with alpha(x) = x (weight 2) and input c(7) = -4. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727(n) = b(n) where c(7^n) = b((7^n-1)/6) = b(A023000(n)), n >= 0. Proof: The alpha-multiplicity with alpha(1) = 1 and c(1) = 1 leads from p^n = p^(n-1)*p to the recurrence c_n = c*c_(n-1) - a*c(n-2), with c_n = c(p^n), c = c(p) and a = alpha(p). Inputs are c_{-1} = 0 and c_0 = c(1) = 1. This gives the polynomial c_n = sqrt(a)^n * S(n,c/sqrt(a)), with Chebyshev's S-polynomials (A049310). See the Apostol reference, Exercise 6., p. 139. Here p = 7, c = -4. - _Wolfdieter Lang_, Apr 27 2016

%D Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.

%H Vincenzo Librandi, <a href="/A168175/b168175.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-7).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F a(n) = (1/2 - i/sqrt(3))*(2 + i*sqrt(3))^n + (1/2 + i/sqrt(3))*(2 - i*sqrt(3))^n (Binet formula), where i is the imaginary unit.

%F a(n) = 4*a(n-1) - 7*a(n-2).

%F a(n) = sqrt(7)^n * S(n, 4/sqrt(7)), n >= 0, with Chebyshev's S polynomials (A049310). - _Wolfdieter Lang_, Apr 27 2016

%F E.g.f.: (2*sqrt(3)*sin(sqrt(3)*x) + 3*cos(sqrt(3)*x))*exp(2*x)/3. - _Ilya Gutkovskiy_, Apr 27 2016

%F a(n) = (-1) * 7^(n+1) * a(-2-n) for all n in Z. - _Michael Somos_, Feb 23 2020

%e G.f. = 1 + 4*x + 9*x^2 + 8*x^3 - 31*x^4 - 180*x^5 - 503*x^6 - 752*x^7 + ... - _Michael Somos_, Feb 23 2020

%t CoefficientList[Series[1/(1-4x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {4,-7},{1,4},30] (* _Harvey P. Dale_, Nov 28 2014 *)

%o (Magma) I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)-7*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 25 2012

%o (PARI) {a(n) = my(s=1, t=1); if( n<0, n=-2-n; s=-1; t=1/7); s * t^(n+1) * polcoeff(1 / (1 - 4*x + 7*x^2) + x * O(x^n), n)}; /* _Michael Somos_, Feb 23 2020 */

%Y Cf. A023000, A049310.

%K sign,easy

%O 0,2

%A _Roger L. Bagula_, Nov 19 2009