The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168106 a(n) = sum of natural numbers m such that n - 7 <= m <= n + 7. 1
 28, 36, 45, 55, 66, 78, 91, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, 465, 480, 495, 510, 525, 540, 555, 570, 585, 600, 615, 630, 645, 660, 675, 690, 705, 720, 735, 750, 765, 780, 795, 810, 825, 840, 855 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see, e.g., A008486). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2, -1). FORMULA a(n) = (7 + n)*(8 + n)/2 = A000217(7+n) for 0 <= n <= 7, a(n) = a(n-1) + 15 for n >= 8. G.f.: (28 - 48*x + 21*x^2 - x^9)/(1 - x)^3. - G. C. Greubel, Jul 13 2016 MATHEMATICA CoefficientList[Series[(28 - 48*x + 21*x^2 - x^9)/(1 - x)^3, {x, 0, 25}], x] (* G. C. Greubel, Jul 13 2016 *) CROSSREFS Sequence in context: A043950 A167308 A303261 * A061900 A048023 A359529 Adjacent sequences: A168103 A168104 A168105 * A168107 A168108 A168109 KEYWORD nonn AUTHOR Jaroslav Krizek, Nov 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 17:12 EDT 2023. Contains 365736 sequences. (Running on oeis4.)