The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A168106 a(n) = sum of natural numbers m such that n - 7 <= m <= n + 7. 1
 28, 36, 45, 55, 66, 78, 91, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, 465, 480, 495, 510, 525, 540, 555, 570, 585, 600, 615, 630, 645, 660, 675, 690, 705, 720, 735, 750, 765, 780, 795, 810, 825, 840, 855 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see, e.g., A008486). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = (7 + n)*(8 + n)/2 = A000217(7+n) for 0 <= n <= 7, a(n) = a(n-1) + 15 for n >= 8. G.f.: (28 - 48*x + 21*x^2 - x^9)/(1 - x)^3. - G. C. Greubel, Jul 13 2016 MATHEMATICA CoefficientList[Series[(28  - 48*x + 21*x^2 - x^9)/(1 - x)^3, {x, 0, 25}], x] (* G. C. Greubel, Jul 13 2016 *) CROSSREFS Sequence in context: A043950 A167308 A303261 * A061900 A048023 A105710 Adjacent sequences:  A168103 A168104 A168105 * A168107 A168108 A168109 KEYWORD nonn AUTHOR Jaroslav Krizek, Nov 18 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 06:07 EST 2021. Contains 349627 sequences. (Running on oeis4.)