|
|
A168106
|
|
a(n) = sum of natural numbers m such that n - 7 <= m <= n + 7.
|
|
1
|
|
|
28, 36, 45, 55, 66, 78, 91, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, 465, 480, 495, 510, 525, 540, 555, 570, 585, 600, 615, 630, 645, 660, 675, 690, 705, 720, 735, 750, 765, 780, 795, 810, 825, 840, 855
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Generalization: If a(n,k) = sum of natural numbers m such that n - k <= m <= n + k (k >= 1) then a(n,k) = (k + n)*(k + n + 1)/2 = A000217(k+n) for 0 <= n <= k, a(n,k) = a(n-1,k) +2k + 1 = ((k + n - 1)*(k + n)/2) + 2k + 1 = A000217(k+n-1) +2k +1 for n >= k + 1 (see, e.g., A008486).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (7 + n)*(8 + n)/2 = A000217(7+n) for 0 <= n <= 7, a(n) = a(n-1) + 15 for n >= 8.
G.f.: (28 - 48*x + 21*x^2 - x^9)/(1 - x)^3. - G. C. Greubel, Jul 13 2016
|
|
MATHEMATICA
|
CoefficientList[Series[(28 - 48*x + 21*x^2 - x^9)/(1 - x)^3, {x, 0, 25}], x] (* G. C. Greubel, Jul 13 2016 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|