login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)).
2

%I #19 Oct 05 2017 20:25:37

%S 1,1,-2,-5,-5,-8,-11,-11,-14,-17,-17,-20,-23,-23,-26,-29,-29,-32,-35,

%T -35,-38,-41,-41,-44,-47,-47,-50,-53,-53,-56,-59,-59,-62,-65,-65,-68,

%U -71,-71,-74,-77,-77,-80,-83,-83,-86,-89,-89,-92,-95,-95,-98,-101,-101,-104,-107,-107,-110,-113,-113

%N Expansion of (1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)).

%H G. C. Greubel, <a href="/A168071/b168071.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).

%F G.f.: (1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)).

%F a(n) = A168072(n)/3^n.

%F From _Wesley Ivan Hurt_, Oct 05 2017: (Start)

%F a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3.

%F a(n) = (45 - 48*n + 18*cos(2*(n-1)*Pi/3) - 9*cos(Pi*cos(2*(n-1)*Pi/3) + Pi*sin(2*(n-1)*Pi/3)/sqrt(3)) + 14*sqrt(3)*sin(2*(n-1)*Pi/3))/24. (End)

%t LinearRecurrence[{1, 0, 1, -1}, {1, 1, -2, -5}, 50] (* _G. C. Greubel_, Jul 08 2016 *)

%o (PARI) Vec((1-3*x^2-4*x^3)/((1-x)^2*(1+x+x^2)) + O(x^70)) \\ _Michel Marcus_, Dec 03 2014

%Y Cf. A168053.

%K easy,sign

%O 0,3

%A _Paul Barry_, Nov 18 2009

%E Corrected by _R. J. Mathar_, Dec 03 2014