login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
7

%I #18 Jan 15 2023 02:18:05

%S 1,49,2352,112896,5419008,260112384,12485394432,599298932736,

%T 28766348771328,1380784741023744,66277667569139712,

%U 3181328043318706176,152703746079297896448,7329779811806299029504,351829430966702353416192

%N Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

%C The initial terms coincide with those of A170768, although the two sequences are eventually different.

%C Computed with Magma using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A167988/b167988.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,-1128).

%F G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 1128*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1).

%F From _G. C. Greubel_, Jan 14 2023: (Start)

%F a(n) = -1128*a(n-16) + 47*Sum_{j=1..15} a(n-j).

%F G.f.: (1 + x)*(1 - x^16)/(1 - 48*x + 1175*x^16 - 1128*x^17). (End)

%t coxG[{16,1128,-47}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, May 05 2015 *)

%t CoefficientList[Series[(1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17), {x, 0, 50}], x] (* _G. C. Greubel_, Jul 03 2016; Jan 14 2023 *)

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17) )); // _G. C. Greubel_, Jan 14 2023

%o (Sage)

%o def A167988_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17) ).list()

%o A167988_list(40) # _G. C. Greubel_, Jan 14 2023

%Y Cf. A154638, A169452, A170768.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009