Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 11 2014 01:34:16
%S 1,1,2,3,4,4,7,6,9,10,13,13,20,19,25,30,36,39,51,55,69,79,92,105,129,
%T 144,168,195,227,257,303,341,395,451,515,588,676,761,867,985,1120,
%U 1261,1433,1611,1821,2053,2307,2591,2919,3266,3663,4100,4587,5121,5725,6381
%N Number of partitions of n such that all parts are equal or all parts are distinct.
%C Note that for positive integers the number of partitions of n such that all parts are equal is equal to the number of proper divisors of n. (A032741(n)).
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpatru.jpg">Illustration of the shell model of partitions (2D and 3D view)</a>
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa2dt.jpg">Illustration of the shell model of partitions (2D view)</a>
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa3dt.jpg">Illustration of the shell model of partitions (3D view)</a>
%F a(n) = A000041(n) - A167930(n).
%F a(n) = A000009(n) + A032741(n).
%e The partitions of 6 are:
%e 6 .............. All parts are distinct ..... (1).
%e 5+1 ............ All parts are distinct ..... (2).
%e 4+2 ............ All parts are distinct ..... (3).
%e 4+1+1 .......... Only some parts are equal.
%e 3+3 ............ All parts are equal ........ (4).
%e 3+2+1 .......... All parts are distinct ..... (5).
%e 3+1+1+1 ........ Only some parts are equal.
%e 2+2+2 .......... All parts are equal ........ (6).
%e 2+2+1+1 ........ Only some parts are equal.
%e 2+1+1+1+1 ...... Only some parts are equal.
%e 1+1+1+1+1+1 .... All parts are equal ........ (7).
%e So a(6) = 7.
%t ds[n_]:=Module[{lun=Length[Union[n]]},Length[n]==lun||lun==1]; Table[ Count[ IntegerPartitions[n],_?(ds)],{n,0,60}] (* _Harvey P. Dale_, Sep 13 2011 *)
%Y Cf. A000005, A000009, A000041, A000065, A032741, A047967, A111133, A134400, A135010, A138121, A167930, A167931, A167933.
%K nonn
%O 0,3
%A _Omar E. Pol_, Nov 15 2009
%E More terms from _D. S. McNeil_, May 10 2010