login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of admissible basis in the postage stamp problem for n denominations and h = 3 stamps.
6

%I #8 Aug 14 2020 13:49:47

%S 1,3,13,86,760,8518,116278,1911198,37063964,835779524,21626042510,

%T 635611172160,21033034941826,777710150809009

%N Number of admissible basis in the postage stamp problem for n denominations and h = 3 stamps.

%C A basis 1 = b_1 < b_2 ... < b_n is admissible if all the values 1 <= x <= b_n is obtainable as a sum of at most h (not necessarily distinct) numbers in the basis.

%D R. K. Guy, Unsolved Problems in Number Theory, C12.

%H R. Alter and J. A. Barnett, <a href="http://www.jstor.org/stable/2321610">A postage stamp problem</a>, Amer. Math. Monthly, 87 (1980), 206-210.

%H M. F. Challis, <a href="http://dx.doi.org/10.1093/comjnl/36.2.117">Two new techniques for computing extremal h-bases A_k</a>, Comp J 36(2) (1993) 117-126

%H Erich Friedman, <a href="https://erich-friedman.github.io/mathmagic/0403.html">Postage stamp problem</a>

%H W. F. Lunnon, <a href="http://comjnl.oxfordjournals.org/cgi/content/abstract/12/4/377">A postage stamp problem</a>, Comput. J. 12 (1969) 377-380.

%H S. Mossige, <a href="http://www.jstor.org/stable/2007661">Algorithms for Computing the h-Range of the Postage Stamp Problem</a>, Math. Comp. 36 (1981) 575-582

%Y Other enumerations with different parameters: A167809 (h = 2), A167810 (h = 3), A167811 (h = 4), A167812 (h = 5), A167813 (h = 6), A167814 (h = 7).

%Y For h = 2, cf. A008932.

%Y A152112 is essentially the same sequence by definition. [From _Herbert Kociemba_, Jul 14 2010]

%K hard,more,nonn

%O 1,2

%A Yogy Namara (yogy.namara(AT)gmail.com), Nov 12 2009

%E Terms a(1) to a(12) verified and new terms a(13) and a(14) added by _Herbert Kociemba_, Jul 14 2010