login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*a(n-1)+3*a(n-2)-6*a(n-3) starting a(0)=a(1)=0, a(2)=1.
11

%I #46 Dec 12 2023 07:45:15

%S 0,0,1,2,7,14,37,74,175,350,781,1562,3367,6734,14197,28394,58975,

%T 117950,242461,484922,989527,1979054,4017157,8034314,16245775,

%U 32491550,65514541,131029082,263652487,527304974,1059392917,2118785834,4251920575,8503841150

%N a(n) = 2*a(n-1)+3*a(n-2)-6*a(n-3) starting a(0)=a(1)=0, a(2)=1.

%C Inverse binomial transform yields two zeros followed by A077917 (a signed variant of A127864).

%C a(n) mod 10 is zero followed by a sequence with period length 8: 0, 1, 2, 7, 4, 7, 4, 5 (repeat).

%C a(n) is the number of length n+1 binary words with some prefix w such that w contains three more 1's than 0's and no prefix of w contains three more 0's than 1's. - _Geoffrey Critzer_, Dec 13 2013

%C From _Gus Wiseman_, Oct 06 2023: (Start)

%C Also the number of subsets of {1..n} with two distinct elements summing to n + 1. For example, the a(2) = 1 through a(5) = 14 subsets are:

%C {1,2} {1,3} {1,4} {1,5}

%C {1,2,3} {2,3} {2,4}

%C {1,2,3} {1,2,4}

%C {1,2,4} {1,2,5}

%C {1,3,4} {1,3,5}

%C {2,3,4} {1,4,5}

%C {1,2,3,4} {2,3,4}

%C {2,4,5}

%C {1,2,3,4}

%C {1,2,3,5}

%C {1,2,4,5}

%C {1,3,4,5}

%C {2,3,4,5}

%C {1,2,3,4,5}

%C The complement is counted by A038754.

%C Allowing twins gives A167936, complement A108411.

%C For n instead of n + 1 we have A365544, complement A068911.

%C The version for all subsets (not just pairs) is A366130.

%C (End)

%H Vincenzo Librandi, <a href="/A167762/b167762.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,-6).

%F a(n) mod 9 = A153130(n), n>3 (essentially the same as A154529, A146501 and A029898).

%F a(n+1)-2*a(n) = 0 if n even, = A000244((1+n)/2) if n odd.

%F a(2*n) = A005061(n). a(2*n+1) = 2*A005061(n).

%F G.f.: x^2/((2*x-1)*(3*x^2-1)). a(n) = 2^n - A038754(n). - _R. J. Mathar_, Nov 12 2009

%F G.f.: x^2/(1-2*x-3*x^2+6*x^3). - _Philippe Deléham_, Nov 11 2009

%t LinearRecurrence[{2,3,-6},{0,0,1},40] (* _Harvey P. Dale_, Sep 17 2013 *)

%t CoefficientList[Series[x^2/((2 x - 1) (3 x^2 - 1)), {x, 0, 50}], x] (* _Vincenzo Librandi_, Sep 17 2013 *)

%t Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],n+1]&]],{n,0,10}] (* _Gus Wiseman_, Oct 06 2023 *)

%Y Cf. A024495, A167710.

%Y First differences are A167936, complement A108411.

%Y Cf. A004526, A004737, A008967, A038754, A046663, A068911, A088809, A093971, A365376, A365544, A366130.

%K nonn,easy

%O 0,4

%A _Paul Curtz_, Nov 11 2009

%E Edited and extended by _R. J. Mathar_, Nov 12 2009