%I #8 Feb 10 2022 03:34:15
%S 1,1,2,2,3,3,5,5,4,6,7,7,10,10,12,12,9,13,8,14,15,15,21,21,19,25,18,
%T 26,24,28,17,29,16,30,31,31,42,42,36,50,51,51,37,53,56,56,35,57,34,58,
%U 48,60,33,61,32,62,63,63
%N Match the multisets in A175020 with those in A037016 then merge the two sequences.
%C A175020 records the multiset with minimum value; whereas A037016 is based on reading binary expansion from right to left, run lengths increase.
%e After the initial zero, A037016 begins:
%e 1
%e 2 3
%e 5 6 7
%e 10 12 13 14 15
%e 21 25 26 28 29 30 31
%e 42 50 51 53 56 57 58 60 61 62 63
%e 85 ...
%e and after resorting, A175020 begins:
%e 1
%e 2 3
%e 5 4 7
%e 10 12 9 8 15
%e 21 ...
%e so the irregular table begins:
%e 1 1
%e 2 2 3 3
%e 5 5 4 6 7 7
%e 10 10 12 12 9 13 8 14 15 15
%e etc.
%e In binary, the number 9 maps to multiset (1,2,1) and the number 13 maps to (2,1,1), so 9 and 13 appear together in the sequence.
%Y Cf. A000041 (1/2 row length of the irregular Table). A000975 (first & second column).
%K nonn,tabf,uned
%O 1,3
%A _Alford Arnold_, Nov 10 2009