login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
1

%I #11 Nov 24 2016 10:57:52

%S 1,48,2256,106032,4983504,234224688,11008560336,517402335792,

%T 24317909782224,1142941759764528,53718262708932816,

%U 2524758347319842352,118663642324032590544,5577191189229531755568,262127985893787992510568

%N Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

%C The initial terms coincide with those of A170767, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H G. C. Greubel, <a href="/A167645/b167645.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, -1081).

%F G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).

%t CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (1081*t^14 - 46*t^13 - 46*t^12 - 46*t^11 - 46*t^10 - 46*t^9 - 46*t^8 - 46*t^7 - 46*t^6 - 46*t^5 - 46*t^4 - 46*t^3 - 46*t^2 - 46*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Jun 18 2016 *)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009