login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n^2 + 3*n + 8)/2.
4

%I #53 Nov 15 2024 11:13:03

%S 6,9,13,18,24,31,39,48,58,69,81,94,108,123,139,156,174,193,213,234,

%T 256,279,303,328,354,381,409,438,468,499,531,564,598,633,669,706,744,

%U 783,823,864,906,949,993,1038,1084,1131,1179,1228,1278,1329,1381,1434,1488,1543

%N a(n) = (n^2 + 3*n + 8)/2.

%H Vincenzo Librandi, <a href="/A167614/b167614.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = n + a(n-1) + 1, with n > 1, a(1)=6.

%F G.f.: x*(6 - 9*x + 4*x^2)/(1-x)^3. - _Vincenzo Librandi_, Sep 16 2013

%F A228446(a(n)) = 7. - _Reinhard Zumkeller_, Mar 12 2014

%F a(n) = A152950(n+2) = A152949(n+3) = A016028(n+5). - _Mathew Englander_, Feb 03 2022

%F From _Elmo R. Oliveira_, Nov 15 2024: (Start)

%F E.g.f.: exp(x)*(4 + 2*x + x^2/2) - 4.

%F a(n) = A027691(n+1)/2.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)

%t Table[(n(n+3))/2+4,{n,80}] (* _Harvey P. Dale_, Mar 24 2011 *)

%t CoefficientList[Series[(6 - 9 x + 4 x^2)/(1 - x)^3,{x, 0, 60}], x] (* _Vincenzo Librandi_, Sep 16 2013 *)

%o (PARI) a(n)=n*(n+3)/2+4 \\ _Charles R Greathouse IV_, Jan 11 2012

%o (Magma) [(n^2+3*n+8)/2: n in [1..60]]; // _Vincenzo Librandi_, Sep 16 2013

%o (Python)

%o print([n*(n+3)//2+4 for n in range(1, 60)]) # _Gennady Eremin_, Feb 03 2022

%Y Cf. A016028, A027691, A152949, A152950, A228446.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Nov 07 2009

%E Corrected (changed one term from 1036 to 1038) by _Harvey P. Dale_, Mar 24 2011

%E New name from _Charles R Greathouse IV_, Jan 11 2012