login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1/(1-3*x-40*x^2-192*x^3).
1

%I #7 Jun 18 2016 00:43:38

%S 1,3,49,459,3913,39507,363169,3421083,32375353,303697827,2862955537,

%T 26952847467,253686746665,2388861601779,22489001385601,

%U 211729323587643,1993409453728537,18767289570726723,176690276990149105

%N G.f.: 1/(1-3*x-40*x^2-192*x^3).

%C The ratio limit a(n+1)/a(n) is 8*1.176845582834894... as n->infinity.

%C The constant is very close to A167288, so its signature sequence agrees with the signature sequence of A167288 to the 95th term.

%H G. C. Greubel, <a href="/A167601/b167601.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, 40, 192).

%F a(n) = 3*a(n-1) + 40*a(n-2) + 192*a(n-3). - _G. C. Greubel_, Jun 17 2016

%t Clear[p, q, x, t, n];

%t p[x_]:= -3 - 5 x - 3 x^2 + 8 *x^3;

%t q[x_]:= 1/Expand[x^3*p[1/x]];

%t a = Table[8^(n + 1)*SeriesCoefficient[ Series[q[t], {t, 0, 60}], n], {n, 0, 60}]

%t LinearRecurrence[{3,40,192},{1, 3, 49},100] (* _G. C. Greubel_, Jun 17 2016 *)

%K nonn

%O 0,2

%A _Roger L. Bagula_, Nov 06 2009

%E Definition simplified by the Associate Editors of the OEIS - Nov 12 2009.