%I #17 Sep 08 2022 08:45:48
%S 789,4077,13269,33165,70485,133869,233877,382989,595605,888045,
%T 1278549,1787277,2436309,3249645,4253205,5474829,6944277,8693229,
%U 10755285,13165965,15962709,19184877,22873749,27072525,31826325
%N The fifth row of the ED4 array A167584: 80*n^4 + 952*n^2 - 768*n + 525.
%H Vincenzo Librandi, <a href="/A167587/b167587.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 80*n^4 + 952*n^2 - 768*n + 525. [Simplified by _M. F. Hasler_, Oct 08 2014]
%F G.f.: (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=789, a(2)=4077, a(3)=13269, a(4)=33165, a(5)=70485. - _Harvey P. Dale_, Jul 21 2011
%t Table[80n^4+952n^2-768n+525,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{789,4077,13269,33165,70485},30] (* _Harvey P. Dale_, Jul 21 2011 *)
%o (Magma) [80*n^4+952*n^2-768*n+525: n in [1..35]]; // _Vincenzo Librandi_, Jul 21 2011, simplified by _M. F. Hasler_, Oct 08 2014
%o (PARI) a(n)=80*n^4+952*n^2-768*n+525 \\ _M. F. Hasler_, Oct 08 2014
%Y Equals the fifth row of the ED4 array A167584.
%K easy,nonn
%O 1,1
%A _Johannes W. Meijer_, Nov 10 2009
%E Corrected and edited by _M. F. Hasler_, Oct 08 2014