login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes which are the concatenation of two squares (in decimal notation).
20

%I #23 Jun 18 2021 01:14:23

%S 11,19,41,149,181,251,449,491,499,641,811,1009,1289,1361,1699,2251,

%T 2549,4001,4289,4441,4729,6449,6481,6761,7841,8419,9001,9619,10891,

%U 11369,11681,12149,12251,12401,12601,12809,13249,13691,13721,14449,14489

%N Primes which are the concatenation of two squares (in decimal notation).

%C Necessarily a(n) has to end with 1 or 9.

%C It is not known if the sequence is infinite.

%C The Bunyakovsky conjecture implies that for every b coprime to 10, there are infinitely many terms where the second square is b^2. - _Robert Israel_, Jun 17 2021

%C Intersection of A191933 and A000040; A193095(a(n)) > 0 and A010051(a(n))=1. - _Reinhard Zumkeller_, Jul 17 2011

%D Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer 2005.

%D Wladyslaw Narkiewicz, The Development of Prime Number Theory from Euclid to Hardy and Littlewood, Springer 2000.

%D Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.

%H Reinhard Zumkeller, <a href="/A167535/b167535.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = m^2 * 10^k + n^2 for a k-digit square number n^2.

%e 11 = 1^2 * 10 + 1^2, 149 = 1^2 * 10^2 + 7^2, 1361 = 1^2 * 10^3 + 19^2.

%e 14401 = 12^2 * 10^2 + 1^2 is not a term because included "0" (1^2=1 is 1-digit).

%e 14449 = 12^2 * 10^2 + 7^2 = 38^2 * 10 + 3^2 is the smallest prime with 2 such representations.

%p zcat:= proc(a,b) 10^(1+ilog10(b))*a+b end proc;

%p S:= select(t -> t <= 10^7 and isprime(t), {seq(seq(zcat(a^2,b^2),a=1..10^3),b=1..10^3,2)}):

%p sort(convert(S,list)); # _Robert Israel_, Jun 17 2021

%o (Haskell)

%o a167535 n = a167535_list !! (n-1)

%o a167535_list = filter ((> 0) . a193095) a000040_list

%o -- _Reinhard Zumkeller_, Jul 17 2011

%o (PARI) is_A167535(n)={ my(t=1); isprime(n) && while(n>t*=10, apply(issquare,divrem(n,t))==[1,1]~ && n%t*10>=t && return(1))}

%o forprime(p=1,default(primelimit), is_A167535(p) && print1(p",")) \\ _M. F. Hasler_, Jul 24 2011

%o (Python)

%o from sympy import isprime

%o def aupto(lim):

%o s = list(i**2 for i in range(1, int(lim**(1/2))+2))

%o t = set(int(str(a)+str(b)) for a in s for b in s)

%o return sorted(filter(isprime, filter(lambda x: x<=lim, t)))

%o print(aupto(15000)) # _Michael S. Branicky_, Jun 17 2021

%Y Cf. A167416, A167417.

%Y Supersequence of A345314.

%K nonn,base

%O 1,1

%A Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 06 2009

%E 11369 inserted by _R. J. Mathar_, Nov 07 2009