Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 13 2018 19:06:04
%S 2,3,3,5,3,13,5,3,31,61,7,5,3,7,139,5,3,283,5,3,571,7,5,3,1153,5,3,
%T 2311,31,4651,17,5,13,3,3,5,3,9343,5,3,11,3,59,3,29,3,19,7,5,3,7,19,5,
%U 3,17,3,113
%N List of first differences of A167493 that are different from 1.
%C Conjecture. All terms of the sequence are primes.
%C The conjecture is false: a(144)=27, a(146)=25, a(158)=45, etc., which are composite numbers. - _Harvey P. Dale_, Dec 05 2015
%H Michel Marcus, <a href="/A167494/b167494.txt">Table of n, a(n) for n = 1..211</a>
%H E. S. Rowland, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html">A natural prime-generating recurrence</a>, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8.
%H V. Shevelev, <a href="http://arxiv.org/abs/0910.4676">A new generator of primes based on the Rowland idea</a>, arXiv:0910.4676 [math.NT], 2009.
%H V. Shevelev, <a href="http://arxiv.org/abs/0911.5478">Three theorems on twin primes</a>, arXiv:0911.5478 [math.NT], 2009-2010. [From _Vladimir Shevelev_, Dec 03 2009]
%t nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; DeleteCases[ Differences[ Transpose[NestList[nxt,{1,2},20000]][[2]]],1] (* _Harvey P. Dale_, Dec 05 2015 *)
%o (PARI) lista(nn) = {my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); select(x->(x!=1), vector(nn-1, n, va[n+1] - va[n]));} \\ _Michel Marcus_, Dec 13 2018
%Y Cf. A167493, A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
%K nonn
%O 1,1
%A _Vladimir Shevelev_, Nov 05 2009