login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-2x+6x^2-x^3)/(1-3x+x^2)^2.
2

%I #17 Jul 28 2022 21:43:13

%S 1,4,19,75,264,869,2741,8396,25175,74271,216336,623689,1782889,

%T 5060500,14277019,40070259,111954456,311555501,863978525,2388417116,

%U 6584117471,18104432199,49667825184,135974484625,371543306449,1013443026724

%N Expansion of (1-2x+6x^2-x^3)/(1-3x+x^2)^2.

%C Hankel transform of A054109.

%H G. C. Greubel, <a href="/A167478/b167478.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).

%F G.f.: (1-2*x+6*x^2-x^3)/(1-3*x+x^2)^2.

%F a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - _Wesley Ivan Hurt_, Jul 28 2022

%t LinearRecurrence[{6, -11, 6, -1}, {1, 4, 19, 75}, 100] (* _G. C. Greubel_, Jun 13 2016 *)

%t CoefficientList[Series[(1-2x+6x^2-x^3)/(1-3x+x^2)^2,{x,0,30}],x] (* _Harvey P. Dale_, Aug 04 2018 *)

%Y Cf. A054109.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Nov 04 2009