login
Pandigital numbers n with at least 4 nontrivial anagrams divisible by n.
0

%I #5 Dec 10 2016 19:07:01

%S 1039675824,1053826974,1068253974,1068379524,1073968254,1075396824,

%T 1098765432,1204756839,1234567890,1357802469

%N Pandigital numbers n with at least 4 nontrivial anagrams divisible by n.

%C For a(7) and a(9), there are 5 nontrivial anagrams divisible by n.

%C List of anagrams:

%C {1039675824,2079351648,4158703296,8317406592,9357082416},

%C {1053826974,2107653948,4215307896,5269134870,8430615792},

%C {1068253974,2136507948,4273015896,5341269870,8546031792},

%C {1068379524,2136759048,4273518096,5341897620,8547036192},

%C {1073968254,2147936508,4295873016,5369841270,8591746032},

%C {1075396824,2150793648,4301587296,5376984120,8603174592},

%C {1098765432,2197530864,4395061728,5493827160,7691358024,8790123456},

%C {1204756839,2409513678,4819027356,6023784195,9638054712},

%C {1234567890,2469135780,4938271560,6172839450,8641975230,9876543120},

%C {1357802469,2715604938,5431209876,6789012345,9504617283}.

%e a(1)=1039675824 with 4 anagram multiples:

%e 2*a(1)=2079351648, 4*a(1)=4158703296, 8*a(1)=8317406592, 9*a(1)=9357082416;

%e a(2)=1053826974 with 4 anagram multiples:

%e 2*a(2)=2107653948, 4*a(2)=4215307896, 5*a(2)=5269134870, 8*a(2)=8430615792.

%Y Cf. A050278, A053654, A161750, A167461.

%K base,fini,full,nonn

%O 1,1

%A _Zak Seidov_, Nov 04 2009