login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A137442.
1

%I #15 Jun 11 2024 13:03:01

%S 1,3,7,10,19,24,40,46,71,78,114,122,171,181,245,256,337,349,449,462,

%T 583,597,741,756,925,942,1138,1156,1381,1400,1656,1676,1965,1986,2310,

%U 2332,2693,2716,3116,3140,3581,3607,4091,4118,4647,4675,5251,5280,5905,5935

%N Partial sums of A137442.

%H Gerald Hillier, <a href="/A167390/b167390.txt">Table of n, a(n) for n = 1..1000</a>

%F Set R(N)=N+ROUND(SQRT(N),0), S(N)=FLOOR(SQRT(R(N))), U(N)=R(N)*(R(N)+1)/2-S(N)*(S(N)+1)*(S(N)+.5)/3, T(N)=CEILING(N/2), then a(N)=T(N)*(1+T(N)*(3+2*T(N)))/6+U(FLOOR(N/2))

%e a(14)=1+2+4+3+9+5+16+6+25+7+36+8+49+10=181

%t Module[{nn=40,sq,int,len},sq=Range[nn]^2;int=Complement[Range[nn],sq];len=Min[ Length[ int],nn]; Riffle[Take[ sq,len],Take[ int,len]]]//Accumulate (* _Harvey P. Dale_, Jun 11 2024 *)

%K nonn

%O 1,2

%A _Gerald Hillier_, Nov 02 2009

%E Terms a(15) and above from _Gerald Hillier_, Jan 06 2022