%I #11 Jan 26 2020 21:01:40
%S 1,0,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,
%T 1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,
%U 0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1
%N Triangle, read by rows, given by [0,1,-1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
%C Diagonal sums: A060576.
%C A167374*A154325 formatted as lower triangular matrix. - _Philippe Deléham_, Nov 19 2009
%F Sum_{k=0..n} T(n,k)*x^k = A000007(n), A046698(n+1), A111286(n+1), A027327(n) for x= 0, 1, 2, 3 respectively.
%F G.f.: (1+x^2*y)/(1-x*y). - _Philippe Deléham_, Nov 09 2013
%F T(n,k) = T(n-1,k-1) for n > 2, T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Nov 09 2013
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 1, 1;
%e 0, 0, 1, 1;
%e 0, 0, 0, 1, 1;
%e 0, 0, 0, 0, 1, 1; ...
%Y Cf. A097806, A103451.
%K nonn,tabl
%O 0,1
%A _Philippe Deléham_, Nov 02 2009