login
Totally multiplicative sequence with a(p) = p*(p+3) = p^2+3p for prime p.
1

%I #14 Sep 20 2020 04:23:11

%S 1,10,18,100,40,180,70,1000,324,400,154,1800,208,700,720,10000,340,

%T 3240,418,4000,1260,1540,598,18000,1600,2080,5832,7000,928,7200,1054,

%U 100000,2772,3400,2800,32400,1480,4180,3744,40000,1804,12600,1978,15400,12960

%N Totally multiplicative sequence with a(p) = p*(p+3) = p^2+3p for prime p.

%H G. C. Greubel, <a href="/A167342/b167342.txt">Table of n, a(n) for n = 1..1000</a>

%F Multiplicative with a(p^e) = (p*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product (p(k)*(p(k)+3))^e(k). a(n) = n * A166591(n).

%F Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 3*p - 1)) = 1.256741057020447773244230946716370792268447699628630376844295183469512964116... - _Vaclav Kotesovec_, Sep 20 2020

%t a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*n, {n, 1, 100}] (* _G. C. Greubel_, Jun 10 2016 *)

%K nonn,mult

%O 1,2

%A _Jaroslav Krizek_, Nov 01 2009