login
A167331
Totally multiplicative sequence with a(p) = 2*(3p-1) = 6p-2 for prime p.
1
1, 10, 16, 100, 28, 160, 40, 1000, 256, 280, 64, 1600, 76, 400, 448, 10000, 100, 2560, 112, 2800, 640, 640, 136, 16000, 784, 760, 4096, 4000, 172, 4480, 184, 100000, 1024, 1000, 1120, 25600, 220, 1120, 1216, 28000, 244, 6400, 256, 6400, 7168, 1360, 280
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (2*(3p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(3*p(k)-1))^e(k).
a(n) = A061142(n) * A166652(n) = 2^bigomega(n) * A166652(n) = 2^A001222(n) * A166652(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((3*fi[[All, 1]] - 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
f[p_, e_] := (6*p-2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 18 2023 *)
PROG
(PARI) a(n) = {my(f=factor(n)); for (k=1, #f~, f[k, 1] = 6*f[k, 1]-2; ); factorback(f); } \\ Michel Marcus, Jun 06 2016
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved