login
A167326
Totally multiplicative sequence with a(p) = 7*(p+3) for prime p.
1
1, 35, 42, 1225, 56, 1470, 70, 42875, 1764, 1960, 98, 51450, 112, 2450, 2352, 1500625, 140, 61740, 154, 68600, 2940, 3430, 182, 1800750, 3136, 3920, 74088, 85750, 224, 82320, 238, 52521875, 4116, 4900, 3920, 2160900, 280, 5390, 4704, 2401000, 308
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (7*(p+3))^e. If n = Product p(k)^e(k) then a(n) = Product (7*(p(k)+3))^e(k).
a(n) = A165828(n) * A166591(n) = 7^bigomega(n) * A166591(n) = 7^A001222(n) * A166591(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 3)^fi[[All, 2]])); Table[a[n]*7^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 09 2016 *)
f[p_, e_] := (7*(p+3))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 21 2023 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved