%I #20 Dec 23 2021 12:08:25
%S 0,0,1,1,2,1,5,5,9,7,14,14,23,17,28,27,44,35,54,57,77,59,87,85,119,
%T 105,134,135,187,149,189,197,251,218,278,275,354,313,361,359,472,405,
%U 480,511,609,519,613,614,771,704,771,788,989,849,938,1005,1175,1038,1215
%N Number of n-vertex 6-hedrites.
%C A k-hedrite is a 4-regular planar graph whose faces have sizes 2, 3 and 4 only and the total number of faces of sizes 2 and 3 is k.
%H Andrey Zabolotskiy, <a href="/A167158/b167158.txt">Table of n, a(n) for n = 2..70</a>
%H Mathieu Dutour Sikiric and Michel Deza, <a href="http://arxiv.org/abs/0910.5323">4-regular and self-dual analogs of fullerenes</a>, arXiv:0910.5323 [math.GT], 2009.
%Y Cf. A167156, A167157, A167159, A111361.
%K nonn
%O 2,5
%A _Jonathan Vos Post_, Oct 29 2009
%E New name from _Andrey Zabolotskiy_, Jul 05 2017