login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167122
a(n) = 20*a(n-1) - 64*a(n-2) + 3 for n > 2; a(0) = 1, a(1) = 22, a(2) = 378.
5
1, 22, 378, 6155, 98911, 1584303, 25355759, 405719791, 6491627247, 103866478319, 1661865422575, 26589853839087, 425437689736943, 6807003149037295, 108912050837581551, 1742592815213244143, 27881485050659663599
OFFSET
0,2
COMMENTS
lim_{n -> infinity} a(n)/a(n-1) = 16.
FORMULA
a(n) = (1451*16^n - 540*4^n + 64)/960, for n > 0.
G.f.: (1 + x + x^3)/((1-x)*(1-4*x)*(1-16*x)).
E.g.f.: (1/960)*(-15 + 64*exp(x) - 540*exp(4*x) + 1451*exp(16*x)). - G. C. Greubel, Jun 04 2016
MATHEMATICA
CoefficientList[Series[(1 + x + x^3)/((1-x)*(1-4*x)*(1-16*x)), {x, 0, 10}], x] (* G. C. Greubel, Jun 04 2016 *)
LinearRecurrence[{21, -84, 64}, {1, 22, 378, 6155}, 20] (* Harvey P. Dale, Sep 26 2023 *)
PROG
(Magma) [ n le 2 select 21*n-20 else n eq 3 select 378 else 20*Self(n-1)-64*Self(n-2)+3: n in [1..17] ];
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Oct 27 2009
STATUS
approved