OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
P. Raff, Table of n, a(n) for n = 1..200
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008.
P. Raff, Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}}. Contains sequence, recurrence, generating function, and more.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
F. Faase, Results from the counting program
FORMULA
a(n) = 201 a(n-1)
- 11104 a(n-2)
+ 259893 a(n-3)
- 3001225 a(n-4)
+ 18824856 a(n-5)
- 67848270 a(n-6)
+ 144802410 a(n-7)
- 186068896 a(n-8)
+ 144802410 a(n-9)
- 67848270 a(n-10)
+ 18824856 a(n-11)
- 3001225 a(n-12)
+ 259893 a(n-13)
- 11104 a(n-14)
+ 201 a(n-15)
- a(n-16)
G.f.: -x(x^14 -1425x^12 +26532x^11 -180448x^10 +545916x^9 -661242x^8 +661242x^6 -545916x^5 +180448x^4 -26532x^3 +1425x^2 -1)/ (x^16 -201x^15 +11104x^14 -259893x^13 +3001225x^12 -18824856x^11 +67848270x^10 -144802410x^9 +186068896x^8 -144802410x^7 +67848270x^6 -18824856x^5 +3001225x^4 -259893x^3 +11104x^2 -201x +1).
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved