login
A167070
Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {2, 5}}.
1
1, 201, 27872, 3656793, 474581525, 61445719296, 7951276371389, 1028790034978377, 133107787044919648, 17221739109190982025, 2228177484370996025801, 288285215706960759705600, 37298804748402271018820409, 4825779209505263485071458889
OFFSET
1,2
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154.
FORMULA
a(n) = 201 a(n-1)
- 11104 a(n-2)
+ 259893 a(n-3)
- 3001225 a(n-4)
+ 18824856 a(n-5)
- 67848270 a(n-6)
+ 144802410 a(n-7)
- 186068896 a(n-8)
+ 144802410 a(n-9)
- 67848270 a(n-10)
+ 18824856 a(n-11)
- 3001225 a(n-12)
+ 259893 a(n-13)
- 11104 a(n-14)
+ 201 a(n-15)
- a(n-16)
G.f.: -x(x^14 -1425x^12 +26532x^11 -180448x^10 +545916x^9 -661242x^8 +661242x^6 -545916x^5 +180448x^4 -26532x^3 +1425x^2 -1)/ (x^16 -201x^15 +11104x^14 -259893x^13 +3001225x^12 -18824856x^11 +67848270x^10 -144802410x^9 +186068896x^8 -144802410x^7 +67848270x^6 -18824856x^5 +3001225x^4 -259893x^3 +11104x^2 -201x +1).
CROSSREFS
Sequence in context: A371109 A371057 A305724 * A175188 A227152 A210166
KEYWORD
nonn
AUTHOR
STATUS
approved