login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = (n-k)^n * binomial(n, n-k) for n < 2*k, k^n * binomial(n, k) for n >= 2*k with T(n, 0) = T(n, n) = 1, read by rows.
1

%I #7 Feb 25 2021 02:38:37

%S 1,1,1,1,2,1,1,3,3,1,1,4,96,4,1,1,5,320,320,5,1,1,6,960,14580,960,6,1,

%T 1,7,2688,76545,76545,2688,7,1,1,8,7168,367416,4587520,367416,7168,8,

%U 1,1,9,18432,1653372,33030144,33030144,1653372,18432,9,1

%N Triangle T(n, k) = (n-k)^n * binomial(n, n-k) for n < 2*k, k^n * binomial(n, k) for n >= 2*k with T(n, 0) = T(n, n) = 1, read by rows.

%C Row sums are: 1, 2, 4, 8, 106, 652, 16514, 158482, 5336706, 69403916, 2915603362, ...

%H G. C. Greubel, <a href="/A167040/b167040.txt">Rows n = 0..50 of the triangle, flattened</a>

%F From _G. C. Greubel_, Feb 24 2021: (Start)

%F T(n, k) = (n-k)^n * binomial(n, n-k) for n < 2*k, k^n * binomial(n, k) for n >= 2*k with T(n, 0) = T(n, n) = 1.

%F T(n, k) = T(n, n-k). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 3, 3, 1;

%e 1, 4, 96, 4, 1;

%e 1, 5, 320, 320, 5, 1;

%e 1, 6, 960, 14580, 960, 6, 1;

%e 1, 7, 2688, 76545, 76545, 2688, 7, 1;

%e 1, 8, 7168, 367416, 4587520, 367416, 7168, 8, 1;

%e 1, 9, 18432, 1653372, 33030144, 33030144, 1653372, 18432, 9, 1;

%e 1, 10, 46080, 7085880, 220200960, 2460937500, 220200960, 7085880, 46080, 10, 1;

%t T[n_, k_]:= If[k==0 || k==n, 1, If[n>=2*k, k^n*Binomial[n, k], (n-k)^n*Binomial[n, n-k]]];

%t Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Feb 24 2021 *)

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (k==0 or k==n): return 1

%o elif (n > 2*k-1): return k^n*binomial(n,k)

%o else: return (n-k)^n*binomial(n,n-k)

%o flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 24 2021

%o (Magma)

%o function T(n,k)

%o if k eq 0 or k eq n then return 1;

%o elif n lt 2*k then return (n-k)^n*Binomial(n,n-k);

%o else return k^n*Binomial(n,k);

%o end if; return T;

%o end function;

%o [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 24 2021

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_ and _Mats Granvik_, Oct 27 2009

%E Edited by _G. C. Greubel_, Feb 24 2021