login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), read by rows n>=0 with terms k=1..3^n, where row n lists the coefficients in the n-th iteration of (x+x^2+x^3).
10

%I #2 Mar 30 2012 18:37:18

%S 1,1,1,1,1,2,4,6,8,8,6,3,1,1,3,9,24,60,138,294,579,1053,1767,2739,

%T 3924,5196,6352,7152,7389,6969,5961,4587,3144,1896,990,438,159,45,9,1,

%U 1,4,16,60,216,744,2460,7818,23910,70446,200160,549006,1455132,3730846,9262712

%N Triangle T(n,k), read by rows n>=0 with terms k=1..3^n, where row n lists the coefficients in the n-th iteration of (x+x^2+x^3).

%e Triangle begins:

%e 1;

%e 1,1,1;

%e 1,2,4,6,8,8,6,3,1;

%e 1,3,9,24,60,138,294,579,1053,1767,2739,3924,5196,6352,7152,7389,6969,5961,4587,3144,1896,990,438,159,45,9,1;

%e 1,4,16,60,216,744,2460,7818,23910,70446,200160,549006,1455132,...;

%e 1,5,25,120,560,2540,11220,48330,203230,835080,3355950,13200648,...;

%e 1,6,36,210,1200,6720,36930,199365,1058175,5526330,28417200,...;

%e 1,7,49,336,2268,15078,98826,639093,4080531,25738755,160474545,...;

%e 1,8,64,504,3920,30128,228984,1722084,12821788,94556532,...;

%e 1,9,81,720,6336,55224,477000,4085028,34700940,292495896,...;

%e 1,10,100,990,9720,94680,915390,8787735,83795085,793894860,...;

%e 1,11,121,1320,14300,153890,1645710,17494455,184915225,...;

%e 1,12,144,1716,20328,239448,2805396,32700558,379309986,...;

%e 1,13,169,2184,28080,359268,4575324,58009614,732380298,...;

%e 1,14,196,2730,37856,522704,7188090,98465913,1343828395,...;

%e 1,15,225,3360,49980,740670,10937010,160947465,2360704815,...;

%e 1,16,256,4080,64800,1025760,16185840,254624520,3993857400,...;

%e 1,17,289,4896,82688,1392368,23379216,391488648,6538326616,...;

%e 1,18,324,5814,104040,1856808,33053814,586957419,10398271833,...;

%e ...

%e The initial diagonals in this triangle begin:

%e A166881: [1,1,4,24,216,2540,36930,639093,12821788,292495896,...];

%e A166882: [1,2,9,60,560,6720,98826,1722084,34700940,793894860,...];

%e A166883: [1,3,16,120,1200,15078,228984,4085028,83795085,1943920935,...]; ...

%e The diagonals are transformed one into the other by

%e triangle A166884, which begins:

%e 1;

%e 1,1;

%e 3,2,1;

%e 15,9,3,1;

%e 114,62,18,4,1;

%e 1159,593,157,30,5,1;

%e 14838,7266,1812,316,45,6,1;

%e 229401,108720,25989,4271,555,63,7,1;

%e 4159662,1922166,445255,70180,8595,890,84,8,1; ...

%o (PARI) {T(n, k)=local(F=x+x^2+x^3, G=x+x*O(x^k)); if(n<0, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, k, x)))}

%Y Cf. diagonals: A166881, A166882, A166883, related triangle: A166884.

%Y Cf. row sums: A166999, variant: A122888.

%K nonn,tabf

%O 0,6

%A _Paul D. Hanna_, Nov 21 2009