login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166856
Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 50, 2450, 120050, 5882450, 288240050, 14123762450, 692064360050, 33911153642450, 1661646528480050, 81420679895522450, 3989613314880600050, 195491052429149401225, 9579061569028320600000, 469374016882387706460000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170769, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, -1176).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^12 - 48*t^11 - 48*t^10 - 48*t^9 -48*t^8 -48*t^7 -48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1).
MATHEMATICA
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^12 - 48*t^11 - 48*t^10 - 48*t^9 - 48*t^8 - 48*t^7 - 48*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 25 2016 *)
CROSSREFS
Sequence in context: A165726 A166325 A166463 * A167103 A167647 A167880
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved