OFFSET
1,1
FORMULA
a(n) = (n^4 + 10*n^3 + 35*n^2 + 50*n - 24)/24.
a(n) = (n^2 + 5*n - 2)*(n^2 + 5*n + 12)/24.
a(n) = (1/24)*(n+1)*(n+2)*(n+3)*(n+4) - 2. - Joerg Arndt, Apr 14 2011
G.f.: x*(3-2*x -2*x^2 +3*x^3 -x^4)/(1-x)^5. - Colin Barker, Jan 11 2012
E.g.f.: (1/24)*(-24 + 96*x + 72*x^2 + 16*x^3 + x^4)*exp(x) + 1. - G. C. Greubel, May 27 2016
EXAMPLE
Some solutions for n=4
...1.1.1.1...1.1.1.1...1.1.1.1...1.1.2.2...1.1.1.1...1.1.2.2...1.1.1.2
...1.1.1.1...1.1.2.2...1.1.1.1...1.2.2.2...1.1.1.1...1.1.2.2...1.1.1.2
...1.1.1.1...1.2.2.2...1.1.1.2...1.2.2.2...1.1.2.2...2.2.2.2...1.1.1.2
...2.2.2.2...1.2.2.2...1.1.2.2...2.2.2.2...2.2.2.2...2.2.2.2...1.2.2.2
------
...1.1.1.1...1.1.2.2...1.1.1.1...1.1.1.1...1.1.1.2...1.1.1.1...1.1.2.2
...1.1.1.2...1.1.2.2...1.2.2.2...1.1.1.1...2.2.2.2...1.1.1.2...2.2.2.2
...2.2.2.2...1.1.2.2...1.2.2.2...1.2.2.2...2.2.2.2...1.1.2.2...2.2.2.2
...2.2.2.2...1.1.2.2...2.2.2.2...2.2.2.2...2.2.2.2...1.2.2.2...2.2.2.2
MAPLE
a:= n-> binomial(n+4, 4)-2:
seq(a(n), n=1..50); # Alois P. Heinz, May 31 2012
MATHEMATICA
q=60; (Transpose[NestList[Accumulate, Range[q], q]]-2)[[5]] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 21 2009
STATUS
approved