login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166749
Numbers that are the sum or product of two numbers, such that the sum and product have reversed digits.
1
0, 4, 18, 27, 49, 72, 81, 94, 499, 994, 4999, 9994, 49999, 99994, 499999, 999994, 4999999, 9999994, 49999999, 99999994, 499999999, 999999994, 4999999999, 9999999994, 49999999999, 99999999994, 499999999999, 999999999994, 4999999999999, 9999999999994, 49999999999999
OFFSET
1,2
COMMENTS
Note that 0 and 4 are their own reversed-digit sums and products, since 0+0=0*0=0 and 2+2=2*2=4. The pattern of some number of nines and then a four, and a four and some number of nines, continues indefinitely.
These are in fact all the solutions, shown by a case-by-case analysis. - Wang Pok Lo, Dec 24 2018
FORMULA
For n>8, a(n)=5*10^((n+1)/2 - 3) - 1 if n odd; a(n)=10^(n/2 - 2) - 6 if n even.
EXAMPLE
For instance, 9*9=81 and 9+9=18 are terms; 3*24=72 and 3+24=27 are terms too.
MATHEMATICA
Do[If[IntegerDigits[x y] == Reverse[IntegerDigits[x + y]], Print[{x, y, x + y, x y}]], {x, 0, 20}, {y, x, 100000}] or a[1]=0; a[2]=4; a[3]=18; a[4]=27; a[5]=49; a[6]=72; a[7]=81; a[8]=94 a[n_] := a[n] = If[OddQ[n], 5*10^((n + 1)/2 - 3) - 1, 10^(n/2 - 2) - 6]
CROSSREFS
Sequence in context: A063563 A323848 A358375 * A370406 A378667 A378633
KEYWORD
nonn,base,easy
AUTHOR
Mark Nandor, Oct 21 2009
STATUS
approved