Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 12 2015 16:51:31
%S 1,11,111,1112,11122,122222,1222222,12222224,122222224,1222222244,
%T 12222224444,122222224444,1222222444444,12222224444444,
%U 122222224444444,1222222244444444,12222224444444444,122222444444444444,1222222444444444444,12222244444444444444
%N Numbers with n digits from the set {1,2,4}, requiring a nondecreasing sequence of digits and a digits sum of A008578(n).
%C Or: a partitioning of p=A008578(n) into n parts, each part an element of {1,2,4}.
%C The representation is often not unique: p=11 could be represented by 111224 or 122222, p=13 by 1111144 or 1112224 or 1222222, p=17 by 11111444 or 11122244 or 12222224. a(n) selects the representation with the minimum number of 4's. - _R. J. Mathar_, Oct 25 2009
%p A008578 := proc(n) if n = 1 then 1; else ithprime(n-1) ; fi; end:
%p A166747 := proc(n) local p,n1,n2,n4,i ; p := A008578(n) ; for n4 from 0 to n do n2 := p-n-3*n4 ; n1 := n-n2-n4 ; if n2 >= 0 and n1 >= 0 then a := 0 ; for i from 1 to n1 do a := 10*a+1 ; od: for i from 1 to n2 do a := 10*a+2 ; od: for i from 1 to n4 do a := 10*a+4 ; od: return a ; end if: end do: end:
%p seq(A166747(n),n=1..20) ; # _R. J. Mathar_, Oct 25 2009
%Y Cf. A134732.
%K nonn,base
%O 1,2
%A _Paul Curtz_, Oct 21 2009
%E Edited by _R. J. Mathar_, Oct 25 2009